

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

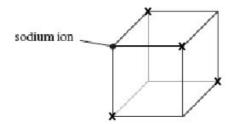
JANUARY 2012

GCE Chemistry – CH2

SECTION A

Q.1 They show a change in properties with a change in conditions (1)This change in properties is reversible (1)[2]

Q.2 Equation
$$2Na + 2H_2O \rightarrow 2NaOH + H_2$$
 (1)
pH Accept any value 8 to 14 inclusive / above 7 (1) [2]


Q.3 4-methylpent-2-ene [1]

(iii)
$$1650 \text{ to } 1750 \text{ cm}^{-1} \quad C = O$$
 [1]

SECTION A TOTAL [10]

SECTION B

Q.6 (a) (i) [1]

Any of crosses shown

- (ii) 6 (not 6,6) [1]
- (b) Stir the mixture (before filtering) / heat (1)
 Wash the mudstone / residue in the filter paper with water (and add the washings to the filtrate) (1)

 [2]
- (c) (i) Add AgNO₃ / Ag⁺ ions (assume aqueous) (1) [2] White precipitate (1)
 - (ii) Add (aqueous) sodium hydroxide (solution) (1) gives (faint) white precipitate with kainite, no reaction with rock salt (1)

OR

Add barium chloride / barium nitrate / barium ions (1) gives white precipitate with kainite, no reaction with rock salt (1)

OR

Add potassium carbonate / carbonate ions (1) gives white precipitate with kainite, no reaction with rock salt (1) [2]

- (d) (i) (The gaining of an electron) gives a full / stable (outer) electron shell [1]
 - (ii) There is less attraction between the nucleus and the (incoming) electron / oxidising power decreases down the group (increases in size is a neutral answer) [1]
- (e) (i) The C–Cl bond (present in 1,1,1-trichloroethane) is **weaker** than the C–H bond (in methylcyclohexane) (1) and is broken by UV light / radicals present (that damage the ozone layer) (1) [2]
 - (ii) Reagent(s) Bromine (aqueous) (1)Observation red/ brown → colourless / decolourised (1) [2]

Total [14]

```
Q.7
       (a)
               (i)
                       % of solid remaining = 2.01 \times 100 = 62.0 (1)
                                                    3.24
                       \% decomposition = 87 (1)
                                                                                              [2]
                               To avoid contamination / ensure that all Ca<sup>2+</sup> ions came from
               (ii)
                       Ι
                               the solid
                                                                                              [1]
                       Ш
                               So that all the calcium hydroxide that could dissolve had
                               dissolved / to produce a saturated solution / to ensure
                               homogeneity
                                                                                              [1]
                               0.0225
               (iii)
                                                                                              [1]
                               0.0225 \times 74.1 = 1.67 (g dm^{-3})
                       Ш
                                                                                              [1]
                       Calcium carbonate was removed (by filtration)
               (iv)
                                                                                              [1]
       (b)
               Brick red (1)
               The 'calcium' will give a flame test colour (1)
                                                                                              [2]
               Ca^{2+} + SO_4^{2-} \rightarrow
       (c)
                                          CaSO<sub>4</sub>
                                                                                              [1]
               Find out if the nano-particles have 'side effects' / further research to see if
       (d)
               they work
                                                                                              [1]
       (e)
               5000 tonnes of fluorapatite give 8600 tonnes of superphosphate (1)
               but yield is 93%
                                               8600 x 93
                                                                   7998 / 8000 (tonnes) (1) [2]
                                                   100
               The two elements both have 2 electrons in their outer energy level / valence
       (f)
               shell can both lose 2 electrons to become Ra<sup>2+</sup> / Ca<sup>2+</sup> / OWTTE
                                                                                              [1]
                                                                                       Total [14]
Q.8
       (a)
               (i)
                       (+) 7
                                                                                              [1]
               (ii)
                       M_r H_2O_2 is 34.02 / 34 (1)
                       Concentration = 76.5 \times 10 = 22.49 / 22.5 \pmod{\text{dm}^{-3}} (1)
                                                                                              [2]
               (iii)
                       A covalent bond where the electrons are not shared equally between
                       the atoms / unequal electron density (1) because of differences in
                       electronegativity between the nitrogen and hydrogen atoms (1)
                                                                                              [2]
                       A (covalent) bond where both electrons come from the same / one
               (iv)
                       atom
                                                                                              [1]
                       (Nitrogen has three bonding pairs and one lone pair of electrons) and
               (v)
                       these repel each other to take up the position of minimum repulsion
                       (1) The lone pair / bonding pair repulsion > bonding pair / bonding
                       pair repulsion (1)
                                                                                              [2]
```

	(b)	(i)	It contains an unpaired electron	[1]
		(ii)	I • CH_3 + CI_2 \rightarrow CH_3CI + CI •	[1]
			II A radical reacts to produce a new radical (that can continue the process)	[1]
		(iii)	C_7H_{16}	[1]
		(iv)	(Bond fission where a covalent bond breaks) and each atom receive an electron	es [1]
			Total [1	13]
Q.9	(a)	molec anothe Alkane	gen bonding occurs between (1) oxygen, nitrogen or fluorine (1) of oule and hydrogen, which is bonded to oxygen / nitrogen / fluorine of er molecule (1) es do not contain an O-H, N-H or F-H bond and cannot therefore gen bond to water molecules (1)	ne [4]
		QWC	9	[1]
	(b)	(i)	The (purified) petroleum is separated by heating (1) due to the different boiling temperatures of different fractions (1)	
			OR the mixture is vaporised (1) and then condensed according to boiling temperatures (1) (as at the oil refinery)	o [2]
		(ii)	$CuCl_2$ Cu +2 $CuCl$ Cu +1 (1)	
			(reduction occurs when) the oxidation number becomes less positive (1)	e [2]
	(c)	(i)	Same molecular formula but a different structural formula / structure	[1]
		(ii)	Both of the carbon atoms of the double bond have different atoms / groups bonded to them (1) There is no free rotation about the double bond (1)	[2]
		(iii)	M _r of compound A is 146.3 / 146 (1)	
			Cost per mole is $\frac{146.3 \times 48 \times 100}{100 \times 73}$ = £96.20 (1)	
			(Accept £96.00 per mole if M _r of 146 has been used)	[2]
			Total [1	4]

Q.10 (a) (i)

$$CH_3$$
— CH_3 —

curly arrows (1) charges (1) [2]

(ii) Nucleophile hydroxide ion / OH⁻ / water (1)

Substitution the replacement of one functional group by another (1) [2]

(iii)
$$CH_3CH_2Br + NaOH \rightarrow CH_2 CH_2 + \textbf{NaBr} + \textbf{H}_2\textbf{O}$$

(accept Na⁺ and Br⁻ in place of NaBr) [1]

(b)
$$M_r = 88 (1)$$

' M_r ' $R = 88 - (45) = 43 (1)$
COOH

∴ R (an alkyl group) is C₃H₇

thus acid is

(c) In graphite each carbon atom is bonded to three other carbon atoms (1) (using covalent bonding)

The other (outer) electron for each carbon atom is delocalised (1), throughout the structure and is able to move (1), conducting electricity In iodine the two iodine atoms are bonded together (using covalent bonding) and there are no free electrons to carry the charge (1) Mention of covalent bonding for either element (1) [5]

QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning (1)

Organisation of information clearly and coherently; use of specialist vocabulary where appropriate (1)

[2]

Total [15]

SECTION B TOTAL [70]